Crystal Bases and Affine Deligne-Lusztig Varieties

Ryosuke Shimada

Abstract

The affine Deligne-Lusztig variety was introduced by Rapoport in [8], which plays an important role in understanding Shimura varieties. There are two combinatorial ways of parameterizing the $J_b(F)$ -orbits of the irreducible components of affine Deligne-Lusztig varieties for GL_n and superbasic b. One way is to use the extended semi-modules introduced by Viehmann. The other way is to use the crystal bases introduced by Kashiwara and Lusztig. Based on [9], we explain an explicit correspondence between them using the crystal structure.

1 Introduction

Let F be a non-archimedean local field with finite field \mathbb{F}_q of prime characteristic p, and let L be the completion of the maximal unramified extension of F. Let σ denote the Frobenius automorphism of L/F. Further, we write \mathcal{O} , \mathfrak{p} for the valuation ring and the maximal ideal of L. Finally, we denote by ϖ a uniformizer of F (and L) and by v_L the valuation of L such that $v_L(\varpi) = 1$.

Let G be a split connected reductive group over F and let T be a split maximal torus of it. Let B be a Borel subgroup of G containing T. For a cocharacter $\mu \in X_*(T)$, let ϖ^{μ} be the image of $\varpi \in \mathbb{G}_m(F)$ under the homomorphism $\mu \colon \mathbb{G}_m \to T$.

Set $K = G(\mathcal{O})$. We fix a dominant cocharacter $\mu \in X_*(T)_+$ and $b \in G(L)$. Then the affine Deligne-Lusztig variety $X_{\mu}(b)$ is the locally closed reduced $\overline{\mathbb{F}}_q$ -subscheme of the affine Grassmannian $\mathcal{G}r$ defined as

$$X_{\mu}(b)(\overline{\mathbb{F}}_q) = \{ xK \in G(L)/K \mid x^{-1}b\sigma(x) \in K\varpi^{\mu}K \} \subset \mathcal{G}r(\overline{\mathbb{F}}_q).$$

Left multiplication by $g^{-1} \in G(L)$ induces an isomorphism between $X_{\mu}(b)$ and $X_{\mu}(g^{-1}b\sigma(g))$. Thus the isomorphism class of the affine Deligne-Lusztig variety only depends on the σ -conjugacy class of b.

The affine Deligne-Lusztig variety $X_{\mu}(b)$ carries a natural action (by left multiplication) by the group

$$J_b(F) = \{ g \in G(L) \mid g^{-1}b\sigma(g) = b \}.$$

For $\mu_{\bullet} = (\mu_1, \dots, \mu_d) \in X_*(T)^d_+$ and $b_{\bullet} = (1, \dots, 1, b) \in G^d(L)$ with $b \in G(L)$, we can similarly define $X_{\mu_{\bullet}}(b_{\bullet}) \subset \mathcal{G}r^d$ and $J_{b_{\bullet}}(F)$ using σ_{\bullet} given by

$$(g_1, g_2, \ldots, g_d) \mapsto (g_2, \ldots, g_d, \sigma(g_1)).$$

The geometric properties of affine Deligne-Lusztig varieties have been studied by many people. One of the most interesting results is an explicit description of the set $J_b(F) \setminus \operatorname{Irr} X_\mu(b)$ of $J_b(F)$ -orbits of $\operatorname{Irr} X_\mu(b)$, where $\operatorname{Irr} X_\mu(b)$ denotes the set of irreducible components of $X_\mu(b)$ (it is known that $X_\mu(b)$ is equi-dimensional).

Let \widehat{G} be the Langlands dual of G defined over $\overline{\mathbb{Q}}_l$ with $l \neq p$. Denote V_{μ} the irreducible \widehat{G} -module of highest weight μ . The crystal basis \mathbb{B}_{μ} of V_{μ} was first constructed by Kashiwara and Lusztig (cf. [4]). In $X_*(T)$, there is a distinguished element λ_b determined by b. It is the "best integral approximation" of the Newton vector of b, but we omit the precise definition. For this, see [2, §2.1] or [2, Example 2.3]. In [7], Nie proved that there exists a natural bijection

$$J_b(F) \setminus \operatorname{Irr} X_\mu(b) \cong \mathbb{B}_\mu(\lambda_b).$$

In particular, $|J_b(F) \setminus \operatorname{Irr} X_\mu(b)| = \dim V_\mu(\lambda_b)$. The proof is reduced to the case where $G = \operatorname{GL}_n$ and b is superbasic. So this case is particularly important. This theorem is first conjectured by Miaofen Chen and Xinwen Zhu. Before the work by Nie, Xiao-Zhu [11] proved the conjecture under the assumption that b is unramified, and Hamacher-Viehmann [2] proved the minuscule case. The last equality is also proved by Rong Zhou and Yihang Zhu in [12]. See [12, §1.2] for the history.

On the other hand, in the case where $G = \operatorname{GL}_n$ and b is superbasic, Viehmann [10] defined a stratification of $X_{\mu}(b)$ using extended semi-modules. For $\mu \in X_*(T)_+$ and superbasic $b \in \operatorname{GL}_n(L)$, let $\mathbb{A}_{\mu,b}^{\text{top}}$ be the set of top extended semi-modules (cf. §2.2), that is, the extended semi-modules whose corresponding strata are top-dimensional. Then $J_b(F) \setminus \operatorname{Irr} X_{\mu}(b)$ is also parametrized by $\mathbb{A}_{\mu,b}^{\text{top}}$.

In [7, Remark 0.10], Nie pointed out that it would be interesting to give an explicit correspondence between $\mathbb{A}_{\mu,b}^{\text{top}}$ and $\mathbb{B}_{\mu}(\lambda_b)$. The purpose of this article is to study this question (for the split case). More precisely, we will propose a way of constructing (the unique lifts of) all the top extended semi-modules from crystal elements, which was unclear before this work.

From now and until the end of this article, we set $G = \operatorname{GL}_n$. Let T be the torus of diagonal matrices, and we choose the subgroup of upper triangular matrices B as Borel subgroup. Let us define the Iwahori subgroup $I \subset K$ as the inverse image of the *lower* triangular matrices under the projection $K \to G(\overline{\mathbb{F}}_q), \ \varpi \mapsto 0$.

We assume b to be superbasic, i.e., its Newton vector $\nu_b \in X_*(T)_{\mathbb{Q}} \cong \mathbb{Q}^n$ is of the form $\nu_b = (\frac{m}{n}, \dots, \frac{m}{n})$ with (m, n) = 1. Moreover, we choose b to be η^m , where $\eta = \begin{pmatrix} 0 & \varpi \\ 1_{n-1} & 0 \end{pmatrix}$. We often regard η (and hence b) as an element of the Iwahori-Weyl group \widetilde{W} . For superbasic b, the condition that $X_{\mu}(b)$ (resp. $X_{\mu_{\bullet}}(b_{\bullet})$) is non-empty is equivalent to $v_L(\det(\varpi^{\mu})) = v_L(\det(b))$ (resp. $v_L(\det(\varpi^{\mu_1 + \dots + \mu_d})) = v_L(\det(b))$) (cf. [3, Theorem 3.1]). In this article, we assume this.

Since $X_{\mu}(b) = X_{\mu+c}(\varpi^c b)$ for any central cocharacter c, we may assume that $\mu(1) \geq \cdots \geq \mu(n-1) \geq \mu(n) = 0$, where $\mu(i)$ denotes the *i*-th entry of μ .

To state the main result, we introduce $\mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\text{top}}$ and $\mathbb{A}_{\mu_{\bullet},b_{\bullet}}^{\text{top}}$. See §4.1 for details. For minuscule $\mu_{\bullet} \in X_*(T)^d_+$ and $b_{\bullet} = (1, \ldots, 1, b) \in G^d(L)$, we define

$$\mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}} \coloneqq \{\lambda_{\bullet} \in X_{*}(T)^{d} \mid \dim X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet}) = \dim X_{\mu_{\bullet}}(b_{\bullet})\}$$

Here $X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet})$ denotes $X_{\mu_{\bullet}}(b_{\bullet}) \cap It^{\lambda_{\bullet}}K/K$. For $\lambda_{\bullet}, \lambda'_{\bullet} \in \mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}}$, we write $\lambda_{\bullet} \sim \lambda'_{\bullet}$ if $\lambda_{\bullet} = \eta^{k}\lambda'_{\bullet} = (\eta^{k}\lambda'_{1}, \dots, \eta^{k}\lambda'_{d})$ for some $k \in \mathbb{Z}$. Let $\mathbb{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}}$ denote the set of equivalence classes with respect to \sim , and let $[\lambda_{\bullet}] \in \mathbb{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}}$ denote the equivalence class represented by $\lambda_{\bullet} \in \mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}}$. Then $J_{b_{\bullet}}(F) \setminus \mathrm{Irr} X_{\mu_{\bullet}}(b_{\bullet})$ is parametrized by $\mathbb{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}}$.

For $\mu \in X_*(T)_+$, let $\mu_{\bullet} \in X_*(T)^d_+$ be a certain minuscule dominant cocharacter with $\mu = \mu_1 + \mu_2 + \cdots + \mu_n$, see §4.2. Note that $\{\mu_1, \mu_2, \ldots, \mu_n\}$ itself is uniquely determined by μ . Let pr: $\mathcal{G}r^d \to \mathcal{G}r$ be the projection to the first factor. This induces pr: $\mathbb{A}^{\mathrm{top}}_{\mu_{\bullet},b_{\bullet}} \to \sqcup_{\mu' \leq \mu} \mathbb{A}^{\mathrm{top}}_{\mu',b}$. Then our main result is the following:

Theorem A (Theorem 4.4). For $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$, using the crystal structure of \mathbb{B}_{μ} , we can construct $\lambda^{1}_{\bullet}(\mathbf{b}), \lambda^{2}_{\bullet}(\mathbf{b}), \ldots, \lambda^{n}_{\bullet}(\mathbf{b}) \in \mathcal{A}^{\mathrm{top}}_{\mu_{\bullet}, b_{\bullet}}$ such that $\lambda^{i}_{\bullet}(\mathbf{b}) = \eta^{i-1}\lambda^{1}_{\bullet}(\mathbf{b})$ and $[\lambda^{1}_{\bullet}(\mathbf{b})]$ is the unique equivalence class in $\mathbb{A}^{\mathrm{top}}_{\mu_{\bullet}, b_{\bullet}}$ whose image $\mathrm{pr}([\lambda^{1}_{\bullet}(\mathbf{b})])$ belongs to $\mathbb{A}^{\mathrm{top}}_{\mu, b}$ and maps to \mathbf{b} under the bijection $J_{b}(F) \setminus \mathrm{Irr} X_{\mu}(b) \cong \mathbb{B}_{\mu}(\lambda_{b})$ by Nie.

A crystal is a finite set with a weight map wt and Kashiwara operators \tilde{e}_{α} and \tilde{f}_{α} satisfying certain conditions, see §3. For more details on the construction of $\lambda_{\bullet}^{1}(\mathbf{b}), \lambda_{\bullet}^{2}(\mathbf{b}), \dots, \lambda_{\bullet}^{n}(\mathbf{b})$, see §4.2. The merit of constructing $[\lambda_{\bullet}^{1}(\mathbf{b})]$ instead of constructing $\operatorname{pr}([\lambda_{\bullet}^{1}(\mathbf{b})])$ directly is that the $J_{b}(F)$ -orbit in $X_{\mu}(b)$ corresponding $[\lambda_{\bullet}^{1}(\mathbf{b})]$ is much more explicit. It is just $J_{b}(F) \operatorname{pr}(\overline{X_{\mu_{\bullet}}^{\lambda_{\bullet}^{1}(\mathbf{b})}(b_{\bullet}))$.

2 Notations

Keep the notations and assumptions in $\S1$.

2.1 Basic Notations

Let $\Phi = \Phi(G, T)$ denote the set of roots of T in G. We denote by Φ_+ (resp. Φ_-) the set of positive (resp. negative) roots distinguished by B. Let χ_{ij} be the character $T \to \mathbb{G}_m$ defined by $\operatorname{diag}(t_1, t_2, \ldots, t_n) \mapsto t_i t_j^{-1}$. Using this notation,

we have $\Phi = \{\chi_{i,j} \mid i \neq j\}$, $\Phi_+ = \{\chi_{i,j} \mid i < j\}$ and $\Phi_- = \{\chi_{i,j} \mid i > j\}$. Let $\Delta = \{\chi_{i,i+1} \mid 1 \le i < n\}$ be the set of simple roots and Δ^{\vee} be the corresponding set of simple coroots. We let

$$X_*(T)_+ = \{\mu \in X_*(T) | \langle \alpha, \mu \rangle \ge 0 \text{ for all } \alpha \in \Phi_+ \}$$

denote the set of dominant cocharacters. Through the isomorphism $X_*(T) \cong \mathbb{Z}^n$, $X_*(T)_+$ can be identified with the set $\{(m_1, \dots, m_n) \in \mathbb{Z}^n | m_1 \ge \dots \ge m_n\}$. For $\lambda, \mu \in X_*(T)$, we write $\lambda \le \mu$ if $\mu - \lambda$ is a linear combination of simple coroots with non-negative coefficients.

Let W_0 denote the finite Weyl group of G, i.e., the symmetric group of degree n. For $1 \leq i \leq n-1$, let s_i be the adjacent transposition changing i to i+1. Then $(W_0, \{s_1, \ldots, s_{n-1}\})$ is a Coxeter system, and we denote by ℓ the associated length function. Let \leq denote the Bruhat order on (W_0, S) . For $w \in W_0$, we denote by $\supp(w)$ the set of integers $1 \leq i \leq n-1$ such that the simple reflection s_i appears in some/any reduced expression of w. We say $w \in W_0$ is a Coxeter element (resp. partial Coxeter element) if it is a product of simple reflections, and each simple reflection appears exactly once (resp. at most once). Let \widetilde{W} be the Iwahori-Weyl group of G. Then \widetilde{W} is isomorphic to

$$X_*(T) \rtimes W_0 = \{ \varpi^\lambda w \mid \lambda \in X_*(T), w \in W_0 \},\$$

and acts on $X_*(T)$. The action of $\varpi^{\lambda} w \in \widetilde{W}$ is given by $v \mapsto w(v) + \lambda$.

2.2 Extended Semi-Modules

Here we briefly summarize the definition of extended semi-modules in a combinatorial way, although we do not need it in this article. See [10] for the precise definition. Recall that $b \in G(L)$ is a superbasic element with slope $\frac{m}{n}$.

Definition 2.1. A semi-module for m, n is a subset $A \subset \mathbb{Z}$ that is bounded below and satisfies $m + A \subset A$ and $n + A \subset A$. Set $\overline{A} = A \setminus (n + A)$. The semi-module A is called normalized if $\sum_{a \in \overline{A}} a = \frac{n(n-1)}{2}$. An extended semi-module (A, φ) for μ is a normalized semi-module A for m, n together with a function $\varphi \colon \mathbb{Z} \to \mathbb{N} \cup \{-\infty\}$ satisfying certain conditions.

Set $X_{\mu}(b)^{0} = \{xK \in X_{\mu}(b) \mid v_{L}(\det(x)) = 0\}$. For an extended semi-module (A, φ) , we can define a locally closed subset $S_{A,\varphi} \subset X_{\mu}(b)^{0}$. They define a decomposition of $X_{\mu}(b)^{0}$ into finitely many disjoint locally closed subschemes. Moreover, $S_{A,\varphi} \subset X_{\mu}(b)^{0}$ is irreducible. So $J_{b}(F) \setminus \operatorname{Irr} X_{\mu}(b)$ is parametrized by $\mathbb{A}_{\mu,b}^{\operatorname{top}} \coloneqq \{(A, \varphi) \mid x_{\mu}(b) \in \mathbb{N}\}$.

dim $S_{A,\varphi}$ = dim $X_{\mu}(b)$ }. In [10], extended semi-modules were used to prove the dimension formula (for $X_{\mu}(b) \neq \emptyset$)

$$\dim X_{\mu}(b) = \langle \rho, \mu - \nu_b \rangle - \frac{1}{2} \operatorname{def}(b).$$

Here ρ denotes half the sum of positive roots, and def(b) denotes the defect of b.

Let us also make a few remarks on $\mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\text{top}}$ introduced in §1. Set $R_{\mu_{\bullet},b_{\bullet}}(\lambda_{\bullet}) = \{(l,\chi_{i,j}) \mid 1 \leq l \leq d, \langle \chi_{i,j}, \lambda_l^{\natural} \rangle = -1, (\lambda_l)_{\chi_{i,j}} \geq 1\}$. See §4.1 for the notation. By [7, Proposition 2.9], $X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet}) \neq \emptyset$ if and only if $\lambda_{\bullet}^{\natural}$ is conjugate to μ_{\bullet} . Moreover, in this case,

$$\dim X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet}) = |R_{\mu_{\bullet},b_{\bullet}}(\lambda_{\bullet})|.$$

Combining this with the dimension formula for $X_{\mu}(b)$, we have

$$\mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}} = \{\lambda_{\bullet} \in X_{*}(T)^{d} \mid \lambda_{\bullet}^{\natural} \in W_{0}\mu_{\bullet}, |R_{\mu_{\bullet},b_{\bullet}}(\lambda_{\bullet})| = \langle \rho, \mu - \nu_{b} \rangle - \frac{1}{2}\operatorname{def}(b) \}.$$

Thus we can actually define $\mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}}$ without using affine Deligne-Lusztig varieties.

If d = 1, $\mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\text{top}}$ can be canonically identified with $\mathcal{A}_{\mu,b}^{\text{top}}$. This follows from the fact that if μ is minuscule, then all extended semi-modules for μ are cyclic ([10, COROLLARY 3.7]).

3 Crystal Bases

Keep the notations and assumptions above.

3.1 Crystals and Young Tableaux

In this subsection, we first recall the definition of \widehat{G} -crystals from [11, Definition 3.3.1]. After that, we give a realization of crystals by Young tableaux. This allows us to treat them in a combinatorial way.

Definition 3.1. A (normal) \widehat{G} -crystal is a finite set \mathbb{B} , equipped with a weight map wt: $\mathbb{B} \to X_*(T)$, and operators $\tilde{e}_{\alpha}, \tilde{f}_{\alpha} \colon \mathbb{B} \to \mathbb{B} \cup \{0\}$ for each $\alpha \in \Delta$, such that

- (i) for every $\mathbf{b} \in \mathbb{B}$, either $\tilde{e}_{\alpha}\mathbf{b} = 0$ or $\operatorname{wt}(\tilde{e}_{\alpha}\mathbf{b}) = \operatorname{wt}(\mathbf{b}) + \alpha^{\vee}$, and either $\tilde{f}_{\alpha}\mathbf{b} = 0$ or $\operatorname{wt}(\tilde{f}_{\alpha}\mathbf{b}) = \operatorname{wt}(\mathbf{b}) \alpha^{\vee}$,
- (ii) for all $\mathbf{b}, \mathbf{b}' \in \mathbb{B}$ one has $\mathbf{b}' = \tilde{e}_{\alpha} \mathbf{b}$ if and only if $\mathbf{b} = \tilde{f}_{\alpha} \mathbf{b}'$, and

(iii) if $\varepsilon_{\alpha}, \phi_{\alpha} \colon \mathbb{B} \to \mathbb{Z}, \ \alpha \in \Delta$ are the maps defined by

$$\varepsilon_{\alpha}(\mathbf{b}) = \max\{k \mid \tilde{e}_{\alpha}^{k}\mathbf{b} \neq 0\} \text{ and } \phi_{\alpha}(\mathbf{b}) = \max\{k \mid \tilde{f}_{\alpha}^{k}\mathbf{b} \neq 0\},\$$

then we require $\phi_{\alpha}(\mathbf{b}) - \varepsilon_{\alpha}(\mathbf{b}) = \langle \alpha, \operatorname{wt}(\mathbf{b}) \rangle$.

For $\lambda \in X_*(T)$, we denote by $\mathbb{B}(\lambda)$ the set of elements with weight λ for \widehat{G} , called the *weight space* with weight λ for \widehat{G} . Let \mathbb{B}_1 and \mathbb{B}_2 be the two \widehat{G} -crystals. A morphism $\mathbb{B}_1 \to \mathbb{B}_2$ is a map of underlying sets compatible with wt, \tilde{e}_{α} and \tilde{f}_{α} .

In the sequel, we write \tilde{e}_i and \tilde{f}_i (resp. ε_i and ϕ_i) instead of $\tilde{e}_{\chi_{i,i+1}}$ and $\tilde{f}_{\chi_{i,i+1}}$ (resp. $\varepsilon_{\chi_{i,i+1}}$ and $\phi_{\chi_{i,i+1}}$) for simplicity.

Let \mathbb{B}_{μ} be the crystal basis of the irreducible \widehat{G} -module of highest weight $\mu \in X_*(T)_+$. Then \mathbb{B}_{μ} is a crystal. We call \mathbb{B}_{μ} a *highest weight crystal* of highest weight μ (cf. [11, Definition 3.3.1 (3)]). There exists a unique element $\mathbf{b}_{\mu} \in \mathbb{B}_{\mu}$ satisfying $\tilde{e}_{\alpha}\mathbf{b}_{\mu} = 0$ for all α , wt(\mathbf{b}_{μ}) = μ , and \mathbb{B}_{μ} is generated from \mathbf{b}_{μ} by operators \tilde{f}_{α} .

We can also define the tensor product of \widehat{G} -crystals (cf. [11, Definition 3.3.1(5)]). Taking tensor product of \widehat{G} -crystal is associative, making the category of \widehat{G} -crystals a monoidal category. Using this fact, we can endow a \widehat{G} -crystal structure on the set of semistandard Young tableaux $\mathcal{B}(Y)$ (cf. [4, chapter 7]). For a semistandard tableau $\mathbf{b} \in \mathcal{B}(Y)$, let k_i denote the number of *i*'s appearing in \mathbf{b} . Then the weight map wt on this \widehat{G} -crystal structure is given by wt(\mathbf{b}) = (k_1, \ldots, k_n) . For an explicit description of the actions of \tilde{e}_i and \tilde{f}_i on $\mathcal{B}(Y)$, see [6, Theorem 3.4.2]. Finally, the following well-known theorem gives a realization of \mathbb{B}_{μ} .

Theorem 3.2. Let $\mu = (\mu(1), \ldots, \mu(n)) \in X_*(T)_+ \setminus \{0\}$ with $\mu(n) \ge 0$. Let Y be the Young diagram having $\mu(i)$ boxes in the *i*th row. Then $\mathbb{B}_{\mu} \cong \mathcal{B}(Y)$.

In the sequel, we identify \mathbb{B}_{μ} and $\mathcal{B}(Y)$ by this isomorphism.

Finally, we recall the Weyl group action on crystals. Let \mathbb{B} be a \widehat{G} -crystal. For any $1 \leq i \leq n-1$ and $\mathbf{b} \in \mathbb{B}$, we set

$$s_i \mathbf{b} = \begin{cases} \tilde{f}_i^{\langle \chi_{i,i+1}, \mathrm{wt}(\mathbf{b}) \rangle} \mathbf{b} & \text{if } \langle \chi_{i,i+1}, \mathrm{wt}(\mathbf{b}) \rangle \ge 0\\ \tilde{e}_i^{-\langle \chi_{i,i+1}, \mathrm{wt}(\mathbf{b}) \rangle} \mathbf{b} & \text{if } \langle \chi_{i,i+1}, \mathrm{wt}(\mathbf{b}) \rangle \le 0. \end{cases}$$

Then we have the obvious relation

$$\operatorname{wt}(s_i \mathbf{b}) = s_i(\operatorname{wt}(\mathbf{b})).$$

By [5, Theorem 7.2.2], this extends to the action of the Weyl group W_0 on \mathbb{B} , which is compatible with the action on $X_*(T)$. One can easily verify the following lemma.

Lemma 3.3. Let $w, w' \in W_0$ and $\mathbf{b} \in \mathbb{B}$. If $w(wt(\mathbf{b})) = w'(wt(\mathbf{b}))$, then $w\mathbf{b} = w'\mathbf{b}$.

Let $\mathbf{b} \in \mathbb{B}(\lambda)$. If λ' is a conjugate of λ , i.e., there exists $w \in W_0$ such that $\lambda' = w\lambda$, then we call $w\mathbf{b}$ the conjugate of \mathbf{b} with weight λ' . By Lemma 3.3, this does not depend on the choice of w.

3.2 The Minuscule Case

If $\mu \in X_*(T)_+$ is minuscule, then wt: $\mathbb{B}_{\mu} \to X_*(T)$ gives an identification between \mathbb{B}_{μ} and the set of cocharacters which are conjugate to μ . Suppose $\mu_{\bullet} = (\mu_1, \ldots, \mu_d) \in X_*(T)^d_+$ is minuscule. We can also identify $\mathbb{B}^{\widehat{G}^d}_{\mu_{\bullet}} := \mathbb{B}_{\mu_1} \times \cdots \times \mathbb{B}_{\mu_d}$ with the set of cocharacters in $X_*(T)^d$ which are conjugate to μ_{\bullet} . Under this identification, set

$$\mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^{d}}(\lambda) = \{(\mu'_{1}, \dots, \mu'_{d}) \in \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^{d}} \mid \mu'_{1} + \dots + \mu'_{d} = \lambda\}$$

for any $\lambda \in X_*(T)$.

We write $\mathbb{B}_{\mu_{\bullet}}^{\hat{G}}$ for the \hat{G} -crystal $\mathbb{B}_{\mu_{1}} \otimes \cdots \otimes \mathbb{B}_{\mu_{d}}$. Note that this is equal to $\mathbb{B}_{\mu_{\bullet}}^{\hat{G}^{d}}$ as a set. As a \hat{G} -crystal, we can decompose $\mathbb{B}_{\mu_{\bullet}}^{\hat{G}}$ into simple objects, i.e., $\mathbb{B}_{\mu_{\bullet}}^{\hat{G}} = \bigsqcup_{\mu} \mathbb{B}_{\mu}^{m_{\mu_{\bullet}}^{\mu}}$. Here $m_{\mu_{\bullet}}^{\mu}$ denotes the multiplicity with which \mathbb{B}_{μ} appears in $\mathbb{B}_{\mu_{\bullet}}^{\hat{G}}$. Using this decomposition, we define a natural map

$$\otimes \colon \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^{d}} \to \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}} \to \sqcup_{\mu} \mathbb{B}_{\mu}$$

as a composition of the map given by taking tensor product and the canonical projection to highest weight \hat{G} -crystals.

For $1 \leq k < n$, let ω_k be the cocharacter of the form $(1, \ldots, 1, 0, \ldots, 0)$ in which 1 is repeated k times. Assume that each μ_i is equal to ω_{k_i} for some $1 \leq k_i < n$ and i < j if and only if $k_i \leq k_j$. In the rest of article, we call such μ_{\bullet} Far-Eastern. Since μ_{\bullet} is Far-Eastern, then $|\mu_{\bullet}| := \mu_1 + \cdots + \mu_d$ is dominant and its last entry is 0. Set $\mu = |\mu_{\bullet}|$ for some Far-Eastern μ_{\bullet} . Using Theorem 3.2, we obtain an embedding

$$\mathrm{FE}\colon \mathbb{B}_{\mu} \to \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}},$$

which decomposes $\mathbf{b} \in \mathbb{B}_{\mu}$ into the tensor product of its columns from right to left. By forgetting the \widehat{G} -crystal structure, we obtain a map $\mathbb{B}_{\mu} \to \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^d}$, which is also denoted by FE. One can easily verify the following lemma.

Lemma 3.4. For any $\mathbf{b} \in \mathbb{B}_{\mu}$, $FE(\mathbf{b})$ is the unique element in $\mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^{d}}$ such that $\otimes(FE(\mathbf{b})) = \mathbf{b}$.

4 Semi-Modules and Crystal Bases

Keep the notations and assumptions above.

4.1 Irreducible Components

Let $\lambda \in X_*(T)$ and $\alpha \in \Phi$. We set $\lambda_{\alpha} = \langle \alpha, \lambda \rangle$ if $\alpha \in \Phi_-$ and $\lambda_{\alpha} = \langle \alpha, \lambda \rangle - 1$ if $\alpha \in \Phi_+$. Let U_{λ} be the subgroup of G generated by U_{α} such that $\lambda_{\alpha} \ge 0$. We define $v_{\lambda} \in W_0$ to be the unique element such that $U_{\lambda} = v_{\lambda}Uv_{\lambda}^{-1}$. Here U denotes the unipotent radical of B. It is easy to check $v_{\eta\lambda} = \tau v_{\lambda}$. For $\lambda_{\bullet} = (\lambda_1, \ldots, \lambda_d) \in X_*(T)^d$, set $v_{\lambda_{\bullet}} = (v_{\lambda_1}, \ldots, v_{\lambda_d})$.

Let us denote by Irr $X_{\mu_{\bullet}}(b_{\bullet})$ the set of irreducible components of $X_{\mu_{\bullet}}(b_{\bullet})$. Through the identification $J_b(F) \cong J_{b_{\bullet}}(F)$ given by $g \mapsto (g, \ldots, g)$, this set is equipped with an action of $J_b(F)$. Set $J_b(F)^0 = J_b(F) \cap K = J_b(F) \cap I$. Then we have $J_b(F)/J_b(F)^0 = \{\eta^k J_b(F)^0 \mid k \in \mathbb{Z}\}$ (cf. [1, Lemma 3.3]).

We first consider the case where μ_{\bullet} is minuscule. For $\lambda_{\bullet} \in X_*(T)^d$, set $\lambda_{\bullet}^{\dagger} = b_{\bullet}\sigma_{\bullet}(\lambda_{\bullet}), \ \lambda_{\bullet}^{\flat} = \lambda_{\bullet}^{\dagger} - \lambda_{\bullet} \text{ and } \lambda_{\bullet}^{\flat} = \upsilon_{\lambda_{\bullet}}^{-1}(\lambda_{\bullet}^{\flat})$. It is easy to check $(\eta\lambda_{\bullet})^{\flat} = \lambda_{\bullet}^{\flat}$. Let λ_b denote the cocharacter whose *i*-th entry is $\lfloor \frac{im}{n} \rfloor - \lfloor \frac{(i-1)m}{n} \rfloor$.

Theorem 4.1. Assume that $\mu_{\bullet} \in X_*(T)^d_+$ is minuscule. Then $\lambda_{\bullet} \in \mathcal{A}^{\text{top}}_{\mu_{\bullet}, b_{\bullet}}$ if and only if $\lambda^{\flat}_{\bullet} \in \mathbb{B}^{\widehat{G}^d}_{\mu_{\bullet}}(\lambda_b)$, and $X^{\lambda_{\bullet}}_{\mu_{\bullet}}(b_{\bullet})$ is an affine space for such λ_{\bullet} . Moreover, the maps $\lambda_{\bullet} \mapsto \lambda^{\flat}_{\bullet}$ and $\lambda_{\bullet} \mapsto \overline{X^{\lambda_{\bullet}}_{\mu_{\bullet}}(b_{\bullet})}$ induce bijections

$$J_b(F) \setminus \operatorname{Irr} X_{\mu_{\bullet}}(b_{\bullet}) \cong \mathbb{A}^{\operatorname{top}}_{\mu_{\bullet}, b_{\bullet}} \cong \mathbb{B}^{\widehat{G}^d}_{\mu_{\bullet}}(\lambda_b).$$

Proof. This follows from [7, Proposition 2.9 & Theorem 3.3]. Note that we have $\operatorname{Stab}_{J_b(F)}(X_{\mu_{\bullet}}^{\lambda_{\bullet}}(b_{\bullet})) = J_b(F)^0$.

We write γ^{G^d} : Irr $X_{\mu_{\bullet}}(b_{\bullet}) \to \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^d}$ for the map which factors through this bijection. Set $\mu = |\mu_{\bullet}|$. By [7, Corollary 1.6], the projection pr: $\mathcal{G}r^d \to \mathcal{G}r$ to the first factor induces a $J_b(F)$ -equivariant map

$$\operatorname{Irr} X_{\mu_{\bullet}}(b_{\bullet}) \to \sqcup_{\mu' \leq \mu} \operatorname{Irr} X_{\mu'}(b), \quad C \mapsto \operatorname{pr}(C),$$

which is also denoted by pr. The general case can be characterized by the minuscule case using pr and the tensor product of \hat{G} -crystals:

Theorem 4.2. There exists a map

$$\gamma^G \colon \operatorname{Irr} X_\mu(b) \to \mathbb{B}_\mu(\lambda_b)$$

which is characterized by the Cartesian square

where μ_{\bullet} is a minuscule cocharacter in $X_*(T)^d_+$ such that $\mu = |\mu_{\bullet}|$. Moreover, γ^G factors through a bijection

$$J_b(F) \setminus \operatorname{Irr} X_\mu(b) \cong \mathbb{B}_\mu(\lambda_b).$$

Proof. This follows from [7, Theorem 0.5 & Theorem 0.7].

Let us denote by Γ^{G^d} (resp. Γ^G) the bijection $\mathbb{A}_{\mu_{\bullet},b_{\bullet}}^{\operatorname{top}} \to \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^d}(\lambda_b)$ (resp. $\mathbb{A}_{\mu,b}^{\operatorname{top}} \to \mathbb{B}_{\mu(\lambda_b)}^{G^d}(\lambda_b)$) induced by γ^{G^d} (resp. γ^G). Then by Theorem 4.1 and Theorem 4.2, we have the Cartesian square

$$\begin{array}{c|c} \mathbb{A}_{\mu_{\bullet},b_{\bullet}}^{\operatorname{top}} & \xrightarrow{\Gamma^{G^{d}}} & \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^{d}}(\lambda_{b}) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

where μ_{\bullet} is a minuscule cocharacter in $X_*(T)^d_+$ such that $\mu = |\mu_{\bullet}|$.

4.2 Construction

Let $\mu \in X_*(T)_+$. For $1 \le k \le \mu(1)$, set

$$\mu_{k} = \begin{cases} \omega_{1} & (1 \leq k \leq \mu(1) - \mu(2)), \\ \omega_{2} & (\mu(1) - \mu(2) < k \leq \mu(1) - \mu(3)), \\ \vdots \\ \omega_{n-2} & (\mu(1) - \mu(n-2) < k \leq \mu(1) - \mu(n-1)) \\ \omega_{n-1} & (\mu(1) - \mu(n-1) < k \leq \mu(1)). \end{cases}$$

Set $d = \mu(1)$. Obviously $\mu_{\bullet} \in X_*(T)^d_+$ is Far-Eastern (§3.2) and $\mu = |\mu_{\bullet}|$.

Let w_{\max} denote the maximal length element in W_0 . Set $\lambda_b^{\text{op}} = w_{\max}\lambda_b$. For any $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$, we denote by \mathbf{b}^{op} the conjugate of \mathbf{b} with weight λ_b^{op} . Let $1 \leq m_0 < n$ be the residue of m modulo n. Note that each entry of λ_b is $\lfloor \frac{m}{n} \rfloor$ or $\lfloor \frac{m}{n} \rfloor + 1$, and $\lambda_b(i) = \lambda_b(n+1-i)$ for any $2 \leq i \leq n-1$. Let $i_0 = 1 < i_1 < i_2 < \cdots < i_{m_0} = n$ be the integers such that $\lambda_b(i_1) = \lambda_b(i_2) = \cdots = \lambda_b(i_{m_0}) = \lfloor \frac{m}{n} \rfloor + 1$. Then

$$\lambda_b^{\text{op}} = w'_{\max}\lambda_b$$
, where $w'_{\max} = (s_{i_{m_0-1}}\cdots s_{n-1})\cdots (s_{i_1}\cdots s_{i_{2}-1})(s_1\cdots s_{i_{1}-1}).$

Here $\lambda_b(i) = \lfloor \frac{m}{n} \rfloor$ (resp. $\lambda_b(i+1) = \lfloor \frac{m}{n} \rfloor$) if and only if $s_{i-1}s_i \leq w'_{\max}$ (resp. $s_is_{i+1} \leq w'_{\max}$). By Lemma 3.3, it follows that \mathbf{b}^{op} can be computed by the action of the Coxeter element w'_{\max} . In this computation, each s_i acts as the action of \tilde{e}_i because $\lfloor \frac{m}{n} \rfloor - (\lfloor \frac{m}{n} \rfloor + 1) = -1$. Therefore, if we write

$$\operatorname{FE}(\mathbf{b}) = \mathbf{b}_1 \otimes \cdots \otimes \mathbf{b}_d,$$

then there exists $(w_1, \ldots, w_d) \in W_0^d$ such that

$$FE(\mathbf{b}^{op}) = w_1 \mathbf{b}_1 \otimes \cdots \otimes w_d \mathbf{b}_d$$

and each simple reflection appears exactly once in some $\operatorname{supp}(w_j)$. One can easily verify the following lemma.

Lemma 4.3. The tuple $(w_1, \ldots, w_d) \in W_0^d$ as above is uniquely determined by **b**. In particular, $w(\mathbf{b}) \coloneqq w_1^{-1} \cdots w_d^{-1}$ is a Coxeter element uniquely determined by **b**.

We call $w(\mathbf{b})$ the Coxeter element associated to \mathbf{b} . Set $\Upsilon(\mathbf{b}) = \{ v \in W_0 \mid v^{-1}\tau^m v = w(\mathbf{b}) \}$, where $\tau = s_1 s_2 \cdots s_{n-1}$. Clearly $|\Upsilon(\mathbf{b})| = n$. For any $\mathbf{b}' \in \mathbb{B}_{\mu}$, set

$$\xi(\mathbf{b}') = (\varepsilon_1(\mathbf{b}') + \dots + \varepsilon_{n-1}(\mathbf{b}'), \varepsilon_2(\mathbf{b}') + \dots + \varepsilon_{n-1}(\mathbf{b}'), \dots, \varepsilon_{n-1}(\mathbf{b}'), 0).$$

Let λ_b^- be the anti-dominant conjugate of λ_b , and let \mathbf{b}^- be the conjugate of \mathbf{b} with weight λ_b^- . For any $\mathbf{b} \in \mathbb{B}_{\mu}(\lambda_b)$ and $v \in \Upsilon(\mathbf{b})$, we define $\xi_{\bullet}(\mathbf{b}, v) \in X_*(T)^d$ by

$$\xi_j(\mathbf{b}, v) = v\xi(v^{-1}\mathbf{b}^-) + \sum_{1 \le j' < j} vw_1^{-1} \cdots w_{j'-1}^{-1} \operatorname{wt}(\mathbf{b}_{j'}) \quad (1 \le j \le d)$$

Theorem 4.4. We have $v_{\xi_j(\mathbf{b},v)} = v w_1^{-1} \cdots w_{j-1}^{-1}$ and $\xi_{\bullet}(\mathbf{b},v) \in \mathcal{A}_{\mu_{\bullet},b_{\bullet}}^{\mathrm{top}}$. Moreover, if v' is an element in $\Upsilon(\mathbf{b})$ different from v', then $\xi_{\bullet}(\mathbf{b},v) \neq \xi_{\bullet}(\mathbf{b},v')$ and $\xi_{\bullet}(\mathbf{b},v) \sim \xi_{\bullet}(\mathbf{b},v')$. Finally, we have

$$(\Gamma^{G^d})^{-1}(\operatorname{FE}(\mathbf{b})) = [\xi_{\bullet}(\mathbf{b}, \upsilon)].$$

Remark 4.5. Clearly, this construction itself does not depend on the choice of realization of \mathbb{B}_{μ} .

We can prove Theorem 4.4 purely combinatorially, using Young tableaux. See [9] for details.

4.3 An Example

In this subsection, we give an example. We consider the case for n = 5, m = 12 and $\mu = (4, 3, 3, 2, 0)$. Then $\mu_1 = (1, 0, 0, 0, 0), \mu_2 = (1, 1, 1, 0, 0), \mu_3 = (1, 1, 1, 1, 0), \mu_4 = (1, 1, 1, 1, 0), \lambda_b = (2, 2, 3, 2, 3)$ and $\lambda_b^{\text{op}} = (3, 2, 3, 2, 2)$. Set

$$\mathbf{b} = \frac{\begin{bmatrix} 1 & 1 & 3 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 5 \\ 5 & 5 \end{bmatrix} \in \mathbb{B}_{\mu}(\lambda_b).$$

Then

$$FE(\mathbf{b}) = \mathbf{b}_1 \otimes \mathbf{b}_2 \otimes \mathbf{b}_3 \otimes \mathbf{b}_4 = \boxed{3} \otimes \boxed{\frac{3}{4}}_{5} \otimes \boxed{\frac{1}{2}}_{\frac{4}{5}} \otimes \boxed{\frac{1}{2}}_{\frac{3}{5}} \in \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^d}.$$

By Theorem 4.1, we want to find λ_{\bullet} satisfying

$$\begin{split} [\lambda_{\bullet}] &= (\Gamma^{G^d})^{-1}(\operatorname{FE}(\mathbf{b})) \\ \Leftrightarrow \lambda_{\bullet}^{\flat} &= \operatorname{FE}(\mathbf{b}) \in \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^d}(\lambda_b) \\ \Leftrightarrow v_{\lambda_1}^{-1}(\lambda_2 - \lambda_1) &= \operatorname{wt}(\mathbf{b}_1) = (0, 0, 1, 0, 0), \\ v_{\lambda_2}^{-1}(\lambda_3 - \lambda_2) &= \operatorname{wt}(\mathbf{b}_2) = (0, 0, 1, 1, 1), \\ v_{\lambda_3}^{-1}(\lambda_4 - \lambda_3) &= \operatorname{wt}(\mathbf{b}_3) = (1, 1, 0, 1, 1), \\ v_{\lambda_4}^{-1}(b\lambda_1 - \lambda_4) &= \operatorname{wt}(\mathbf{b}_4) = (1, 1, 1, 0, 1). \end{split}$$

In the sequel, we check that for $v \in \Upsilon(\mathbf{b})$, $\lambda_{\bullet} = \xi_{\bullet}(\mathbf{b}, v)$ satisfies these equations. Since

$$\mathbf{b}^{\mathrm{op}} = \tilde{e}_{3}\tilde{e}_{4}\tilde{e}_{1}\tilde{e}_{2}\mathbf{b} = \frac{\begin{vmatrix} 1 & 1 & 1 & 3 \end{vmatrix}}{\begin{vmatrix} 2 & 2 & 4 \\ \hline 3 & 3 & 5 \\ \hline 4 & 5 \end{vmatrix} \in \mathbb{B}_{\mu}(\lambda_{b}^{\mathrm{op}}),$$

we have

$$\operatorname{FE}(\mathbf{b}^{\operatorname{op}}) = \boxed{3} \otimes s_1 s_2 \underbrace{\begin{array}{c}3\\4\\5\end{array}}^{3} \otimes s_3 \underbrace{\begin{array}{c}1\\2\\4\\5\end{array}}^{1} \otimes s_4 \underbrace{\begin{array}{c}1\\2\\3\\5\end{array}}^{2} \in \mathbb{B}_{\mu_{\bullet}}^{\widehat{G}^d},$$

and

$$w_1 = 1, w_2 = s_1 s_2, w_3 = s_3, w_4 = s_4, w(\mathbf{b}) = w_1^{-1} w_2^{-1} w_3^{-1} w_4^{-1} = s_2 s_1 s_3 s_4.$$

 So

$$\Upsilon(\mathbf{b}) = \{ v \in W_0 \mid v^{-1}\tau^{12}v = s_2s_1s_3s_4 \}$$

= $\{ v \in W_0 \mid (1 \ 3 \ 5 \ 2 \ 4) = (v(1) \ v(3) \ v(4) \ v(5) \ v(2)) \}$
= $\{ (1 \ 3 \ 5 \ 4 \ 2), (2 \ 4 \ 5), (1 \ 5)(2 \ 3), (1 \ 2 \ 5 \ 3 \ 4), (1 \ 4 \ 3) \}$

Set $v_1 = (1 \ 3 \ 5 \ 4 \ 2), v_2 = (2 \ 4 \ 5), v_3 = (1 \ 5)(2 \ 3), v_4 = (1 \ 2 \ 5 \ 3 \ 4), v_5 = (1 \ 4 \ 3).$ Then

$$\begin{split} \upsilon_1^{-1}\lambda_b^- &= (2,2,3,2,3), \upsilon_2^{-1}\lambda_b^- = (2,3,2,3,2), \upsilon_3^{-1}\lambda_b^- = (3,2,2,3,2), \\ \upsilon_4^{-1}\lambda_b^- &= (2,3,3,2,2), \upsilon_5^{-1}\lambda_b^- = (3,2,2,2,3). \end{split}$$

The corresponding conjugates of \mathbf{b} (cf. [6, Theorem 3.4.2]) are

$$\mathbf{b} = \begin{bmatrix} 1 & 1 & 3 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 5 \\ 5 & 5 \end{bmatrix}, \quad \tilde{e}_2 \tilde{e}_4 \mathbf{b} = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 5 \\ 4 & 5 \end{bmatrix}, \quad \tilde{e}_1 \tilde{e}_2 \tilde{e}_4 \mathbf{b} = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 5 \\ 4 & 5 \end{bmatrix},$$
$$\tilde{e}_3 \tilde{e}_2 \tilde{e}_4 \mathbf{b} = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 \end{bmatrix}, \quad \tilde{e}_1 \tilde{e}_2 \mathbf{b} = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 5 \\ 5 & 5 \end{bmatrix},$$

respectively. From this, we compute

$$\begin{split} &\xi(v_1^{-1}\mathbf{b}^-) = (3,3,1,1,0), \xi(v_2^{-1}\mathbf{b}^-) = (3,2,1,0,0), \xi(v_3^{-1}\mathbf{b}^-) = (2,2,1,0,0), \\ &\xi(v_4^{-1}\mathbf{b}^-) = (3,2,1,1,0), \xi(v_5^{-1}\mathbf{b}^-) = (3,3,2,1,0), \end{split}$$

and

$$v_1\xi(v_1^{-1}\mathbf{b}^-) = (3, 1, 3, 0, 1), v_2\xi(v_2^{-1}\mathbf{b}^-) = (3, 0, 1, 2, 0), v_3\xi(v_3^{-1}\mathbf{b}^-) = (0, 1, 2, 0, 2), v_4\xi(v_4^{-1}\mathbf{b}^-) = (1, 3, 0, 1, 2), v_5\xi(v_5^{-1}\mathbf{b}^-) = (2, 3, 1, 3, 0).$$

Note that

$$v_{2}\xi(v_{2}^{-1}\mathbf{b}^{-}) = \eta(v_{3}\xi(v_{3}^{-1}\mathbf{b}^{-})), v_{4}\xi(v_{4}^{-1}\mathbf{b}^{-}) = \eta(v_{2}\xi(v_{2}^{-1}\mathbf{b}^{-})), v_{1}\xi(v_{1}^{-1}\mathbf{b}^{-}) = \eta(v_{4}\xi(v_{4}^{-1}\mathbf{b}^{-})), v_{5}\xi(v_{5}^{-1}\mathbf{b}^{-}) = \eta(v_{1}\xi(v_{1}^{-1}\mathbf{b}^{-})).$$

We first consider the case for v_3 . Set $\xi_{\bullet} = \xi_{\bullet}(\mathbf{b}, v_3)$. Then

$$\begin{aligned} \xi_1 &= (0, 1, 2, 0, 2), \\ \xi_2 &= \xi_1 + \upsilon_3 \operatorname{wt}(\mathbf{b}_1) = (0, 2, 2, 0, 2), \\ \xi_3 &= \xi_2 + \upsilon_3 \operatorname{wt}(\mathbf{b}_2) = (1, 3, 2, 1, 2), \\ \xi_4 &= \xi_3 + \upsilon_3 s_2 s_1 \operatorname{wt}(\mathbf{b}_3) = (2, 4, 2, 2, 3). \end{aligned}$$

We can check that

 $v_{\xi_1} = v_3, v_{\xi_2} = v_3 = v_3 w_1^{-1}, v_{\xi_3} = v_3 s_2 s_1 = v_3 w_1^{-1} w_2^{-1}, v_{\xi_4} = v_3 s_2 s_1 s_3 = v_3 w_1^{-1} w_2^{-1} w_3^{-1},$ and

$$b\xi_1 - \xi_4 = \tau^{12}\xi_1 + (3, 3, 2, 2, 2) - \xi_4$$

= (0, 2, 0, 1, 2) + (3, 3, 2, 2, 2) - (2, 4, 2, 2, 3)
= (1, 1, 0, 1, 1) = v_{\xi_4} \operatorname{wt}(\mathbf{b}_4).

Thus $\xi_{\bullet}^{\flat} = FE(\mathbf{b})$. The same holds for other $\upsilon \in \Upsilon(\mathbf{b})$ because $\upsilon_{\eta\lambda} = \tau \upsilon_{\lambda}$.

References

- M. Chen and E. Viehmann, Affine Deligne-Lusztig varieties and the action of J, J. Algebraic Geom. 27 (2018), no. 2, 273–304.
- [2] P. Hamacher and E. Viehmann, Irreducible components of minuscule affine Deligne-Lusztig varieties, Algebra Number Theory 12 (2018), no. 7, 1611–1634.
- [3] X. He, Some results on affine Deligne-Lusztig varieties, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1345–1365.
- [4] J. Hong and S.-J. Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002.
- [5] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413.
- [6] M. Kashiwara and T. Nakashima, Crystal graphs for representations of the qanalogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345.
- [7] S. Nie, Irreducible components of affine Deligne-Lusztig varieties, Cambridge Journal of Mathematics 10 (2022), no. 2, 433–510.
- [8] M. Rapoport, A guide to the reduction modulo p of Shimura varieties, Astérisque (2005), no. 298, 271–318, Automorphic forms. I.
- [9] R. Shimada, Semi-modules and crystal bases via affine Deligne-Lusztig varieties, arXiv:2212.12855 (2022).
- [10] E. Viehmann, The dimension of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 3, 513–526.
- [11] L. Xiao and X. Zhu, Cycles on Shimura varieties via geometric Satake, arXiv:1707.05700 (2017).
- [12] R. Zhou and Y. Zhu, Twisted orbital integrals and irreducible components of affine Deligne-Lusztig varieties, Camb. J. Math. 8 (2020), no. 1, 149–241.