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Abstract

The affine Deligne-Lusztig variety was introduced by Rapoport in [8],
which plays an important role in understanding Shimura varieties. There are
two combinatorial ways of parameterizing the Jb(F )-orbits of the irreducible
components of affine Deligne-Lusztig varieties for GLn and superbasic b. One
way is to use the extended semi-modules introduced by Viehmann. The other
way is to use the crystal bases introduced by Kashiwara and Lusztig. Based
on [9], we explain an explicit correspondence between them using the crystal
structure.

1 Introduction

Let F be a non-archimedean local field with finite field Fq of prime characteristic p,
and let L be the completion of the maximal unramified extension of F . Let σ denote
the Frobenius automorphism of L/F . Further, we write O, p for the valuation ring
and the maximal ideal of L. Finally, we denote by ϖ a uniformizer of F (and L)
and by vL the valuation of L such that vL(ϖ) = 1.

Let G be a split connected reductive group over F and let T be a split maximal
torus of it. Let B be a Borel subgroup of G containing T . For a cocharacter µ ∈
X∗(T ), let ϖ

µ be the image of ϖ ∈ Gm(F ) under the homomorphism µ : Gm → T .
Set K = G(O). We fix a dominant cocharacter µ ∈ X∗(T )+ and b ∈ G(L). Then

the affine Deligne-Lusztig variety Xµ(b) is the locally closed reduced Fq-subscheme
of the affine Grassmannian Gr defined as

Xµ(b)(Fq) = {xK ∈ G(L)/K | x−1bσ(x) ∈ KϖµK} ⊂ Gr(Fq).

Left multiplication by g−1 ∈ G(L) induces an isomorphism between Xµ(b) and
Xµ(g

−1bσ(g)). Thus the isomorphism class of the affine Deligne-Lusztig variety
only depends on the σ-conjugacy class of b.

The affine Deligne-Lusztig variety Xµ(b) carries a natural action (by left multi-
plication) by the group

Jb(F ) = {g ∈ G(L) | g−1bσ(g) = b}.
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For µ• = (µ1, . . . , µd) ∈ X∗(T )
d
+ and b• = (1, . . . , 1, b) ∈ Gd(L) with b ∈ G(L),

we can similarly define Xµ•(b•) ⊂ Grd and Jb•(F ) using σ• given by

(g1, g2, . . . , gd) 7→ (g2, . . . , gd, σ(g1)).

The geometric properties of affine Deligne-Lusztig varieties have been studied by
many people. One of the most interesting results is an explicit description of the
set Jb(F )\ IrrXµ(b) of Jb(F )-orbits of IrrXµ(b), where IrrXµ(b) denotes the set of
irreducible components of Xµ(b) (it is known that Xµ(b) is equi-dimensional).

Let Ĝ be the Langlands dual of G defined over Ql with l 6= p. Denote Vµ the

irreducible Ĝ-module of highest weight µ. The crystal basis Bµ of Vµ was first
constructed by Kashiwara and Lusztig (cf. [4]). In X∗(T ), there is a distinguished
element λb determined by b. It is the “best integral approximation” of the Newton
vector of b, but we omit the precise definition. For this, see [2, §2.1] or [2, Example
2.3]. In [7], Nie proved that there exists a natural bijection

Jb(F )\ IrrXµ(b) ∼= Bµ(λb).

In particular, |Jb(F )\ IrrXµ(b)| = dimVµ(λb). The proof is reduced to the case
where G = GLn and b is superbasic. So this case is particularly important. This
theorem is first conjectured by Miaofen Chen and Xinwen Zhu. Before the work by
Nie, Xiao-Zhu [11] proved the conjecture under the assumption that b is unramified,
and Hamacher-Viehmann [2] proved the minuscule case. The last equality is also
proved by Rong Zhou and Yihang Zhu in [12]. See [12, §1.2] for the history.

On the other hand, in the case whereG = GLn and b is superbasic, Viehmann [10]
defined a stratification of Xµ(b) using extended semi-modules. For µ ∈ X∗(T )+ and
superbasic b ∈ GLn(L), let Atop

µ,b be the set of top extended semi-modules (cf. §2.2),
that is, the extended semi-modules whose corresponding strata are top-dimensional.
Then Jb(F )\ IrrXµ(b) is also parametrized by Atop

µ,b .
In [7, Remark 0.10], Nie pointed out that it would be interesting to give an

explicit correspondence between Atop
µ,b and Bµ(λb). The purpose of this article is to

study this question (for the split case). More precisely, we will propose a way of
constructing (the unique lifts of) all the top extended semi-modules from crystal
elements, which was unclear before this work.

From now and until the end of this article, we set G = GLn. Let T be the torus
of diagonal matrices, and we choose the subgroup of upper triangular matrices B as
Borel subgroup. Let us define the Iwahori subgroup I ⊂ K as the inverse image of
the lower triangular matrices under the projection K → G(Fq), ϖ 7→ 0.

We assume b to be superbasic, i.e., its Newton vector νb ∈ X∗(T )Q ∼= Qn is of
the form νb = (m

n
, . . . , m

n
) with (m,n) = 1. Moreover, we choose b to be ηm, where

η =

(
0 ϖ

1n−1 0

)
. We often regard η (and hence b) as an element of the Iwahori-Weyl

2



group W̃ . For superbasic b, the condition that Xµ(b) (resp. Xµ•(b•)) is non-empty is
equivalent to vL(det(ϖ

µ)) = vL(det(b)) (resp. vL(det(ϖ
µ1+···+µd)) = vL(det(b))) (cf.

[3, Theorem 3.1]). In this article, we assume this.
Since Xµ(b) = Xµ+c(ϖ

cb) for any central cocharacter c, we may assume that
µ(1) ≥ · · · ≥ µ(n− 1) ≥ µ(n) = 0, where µ(i) denotes the i-th entry of µ.

To state the main result, we introduce Atop
µ•,b•

and Atop
µ•,b•

. See §4.1 for details.

For minuscule µ• ∈ X∗(T )
d
+ and b• = (1, . . . , 1, b) ∈ Gd(L), we define

Atop
µ•,b•

:= {λ• ∈ X∗(T )
d | dimXλ•

µ• (b•) = dimXµ•(b•)}.

Here Xλ•
µ• (b•) denotes Xµ•(b•) ∩ Itλ•K/K. For λ•, λ

′
• ∈ Atop

µ•,b•
, we write λ• ∼ λ′

•
if λ• = ηkλ′

• = (ηkλ′
1, . . . , η

kλ′
d) for some k ∈ Z. Let Atop

µ•,b•
denote the set of

equivalence classes with respect to ∼, and let [λ•] ∈ Atop
µ•,b•

denote the equivalence

class represented by λ• ∈ Atop
µ•,b•

. Then Jb•(F )\ IrrXµ•(b•) is parametrized by Atop
µ•,b•

.

For µ ∈ X∗(T )+, let µ• ∈ X∗(T )
d
+ be a certain minuscule dominant cocharacter

with µ = µ1 + µ2 + · · · + µn, see §4.2. Note that {µ1, µ2, . . . , µn} itself is uniquely
determined by µ. Let pr : Grd → Gr be the projection to the first factor. This
induces pr : Atop

µ•,b•
→ tµ′≤µAtop

µ′,b. Then our main result is the following:

Theorem A (Theorem 4.4). For b ∈ Bµ(λb), using the crystal structure of Bµ,
we can construct λ1

•(b), λ
2
•(b), . . . , λ

n
• (b) ∈ Atop

µ•,b•
such that λi

•(b) = ηi−1λ1
•(b) and

[λ1
•(b)] is the unique equivalence class in Atop

µ•,b•
whose image pr([λ1

•(b)]) belongs to

Atop
µ,b and maps to b under the bijection Jb(F )\ IrrXµ(b) ∼= Bµ(λb) by Nie.

A crystal is a finite set with a weight map wt and Kashiwara operators ẽα and
f̃α satisfying certain conditions, see §3. For more details on the construction of
λ1
•(b), λ

2
•(b), . . . , λ

n
• (b), see §4.2. The merit of constructing [λ1

•(b)] instead of con-
structing pr([λ1

•(b)]) directly is that the Jb(F )-orbit in Xµ(b) corresponding [λ1
•(b)]

is much more explicit. It is just Jb(F ) pr(X
λ1
•(b)

µ• (b•)).

2 Notations

Keep the notations and assumptions in §1.

2.1 Basic Notations

Let Φ = Φ(G, T ) denote the set of roots of T in G. We denote by Φ+ (resp.
Φ−) the set of positive (resp. negative) roots distinguished by B. Let χij be the
character T → Gm defined by diag(t1, t2, . . . , tn) 7→ titj

−1. Using this notation,
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we have Φ = {χi,j | i 6= j}, Φ+ = {χi,j | i < j} and Φ− = {χi,j | i > j}. Let
∆ = {χi,i+1 | 1 ≤ i < n} be the set of simple roots and ∆∨ be the corresponding set
of simple coroots. We let

X∗(T )+ = {µ ∈ X∗(T )|〈α, µ〉 ≥ 0 for all α ∈ Φ+}

denote the set of dominant cocharacters. Through the isomorphism X∗(T ) ∼= Zn,
X∗(T )+ can be identified with the set {(m1, · · · ,mn) ∈ Zn|m1 ≥ · · · ≥ mn}. For
λ, µ ∈ X∗(T ), we write λ ≤ µ if µ−λ is a linear combination of simple coroots with
non-negative coefficients.

Let W0 denote the finite Weyl group of G, i.e., the symmetric group of degree
n. For 1 ≤ i ≤ n− 1, let si be the adjacent transposition changing i to i+ 1. Then
(W0, {s1, . . . , sn−1}) is a Coxeter system, and we denote by ℓ the associated length
function. Let ≤ denote the Bruhat order on (W0, S). For w ∈ W0, we denote by
supp(w) the set of integers 1 ≤ i ≤ n− 1 such that the simple reflection si appears
in some/any reduced expression of w. We say w ∈ W0 is a Coxeter element (resp.
partial Coxeter element) if it is a product of simple reflections, and each simple

reflection appears exactly once (resp. at most once). Let W̃ be the Iwahori-Weyl

group of G. Then W̃ is isomorphic to

X∗(T )⋊W0 = {ϖλw | λ ∈ X∗(T ), w ∈ W0},

and acts on X∗(T ). The action of ϖλw ∈ W̃ is given by v 7→ w(v) + λ.

2.2 Extended Semi-Modules

Here we briefly summarize the definition of extended semi-modules in a combinato-
rial way, although we do not need it in this article. See [10] for the precise definition.
Recall that b ∈ G(L) is a superbasic element with slope m

n
.

Definition 2.1. A semi-module for m,n is a subset A ⊂ Z that is bounded below
and satisfies m + A ⊂ A and n + A ⊂ A. Set Ā = A \ (n + A). The semi-module

A is called normalized if
∑

a∈Ā a = n(n−1)
2

. An extended semi-module (A,φ) for µ is
a normalized semi-module A for m,n together with a function φ : Z → N ∪ {−∞}
satisfying certain conditions.

Set Xµ(b)
0 = {xK ∈ Xµ(b) | vL(det(x)) = 0}. For an extended semi-module

(A,φ), we can define a locally closed subset SA,φ ⊂ Xµ(b)
0. They define a decom-

position of Xµ(b)
0 into finitely many disjoint locally closed subschemes. Moreover,

SA,φ ⊂ Xµ(b)
0 is irreducible. So Jb(F )\ IrrXµ(b) is parametrized by Atop

µ,b := {(A,φ) |
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dimSA,φ = dimXµ(b)}. In [10], extended semi-modules were used to prove the di-
mension formula (for Xµ(b) 6= ∅)

dimXµ(b) = 〈ρ, µ− νb〉 −
1

2
def(b).

Here ρ denotes half the sum of positive roots, and def(b) denotes the defect of b.
Let us also make a few remarks on Atop

µ•,b•
introduced in §1. Set Rµ•,b•(λ•) =

{(l, χi,j) | 1 ≤ l ≤ d, 〈χi,j, λ
♮
l〉 = −1, (λl)χi,j

≥ 1}. See §4.1 for the notation. By [7,
Proposition 2.9], Xλ•

µ• (b•) 6= ∅ if and only if λ♮
• is conjugate to µ•. Moreover, in this

case,
dimXλ•

µ• (b•) = |Rµ•,b•(λ•)|.

Combining this with the dimension formula for Xµ(b), we have

Atop
µ•,b•

= {λ• ∈ X∗(T )
d | λ♮

• ∈ W0µ•, |Rµ•,b•(λ•)| = 〈ρ, µ− νb〉 −
1

2
def(b)}.

Thus we can actually define Atop
µ•,b•

without using affine Deligne-Lusztig varieties.

If d = 1, Atop
µ•,b•

can be canonically identified with Atop
µ,b . This follows from the

fact that if µ is minuscule, then all extended semi-modules for µ are cyclic ([10,
COROLLARY 3.7]).

3 Crystal Bases

Keep the notations and assumptions above.

3.1 Crystals and Young Tableaux

In this subsection, we first recall the definition of Ĝ-crystals from [11, Definition
3.3.1]. After that, we give a realization of crystals by Young tableaux. This allows
us to treat them in a combinatorial way.

Definition 3.1. A (normal) Ĝ-crystal is a finite set B, equipped with a weight map
wt: B → X∗(T ), and operators ẽα, f̃α : B → B ∪ {0} for each α ∈ ∆, such that

(i) for every b ∈ B, either ẽαb = 0 or wt(ẽαb) = wt(b) + α∨, and either f̃αb = 0
or wt(f̃αb) = wt(b)− α∨,

(ii) for all b,b′ ∈ B one has b′ = ẽαb if and only if b = f̃αb
′, and
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(iii) if εα, ϕα : B → Z, α ∈ ∆ are the maps defined by

εα(b) = max{k | ẽkαb 6= 0} and ϕα(b) = max{k | f̃k
αb 6= 0},

then we require ϕα(b)− εα(b) = 〈α,wt(b)〉.
For λ ∈ X∗(T ), we denote by B(λ) the set of elements with weight λ for Ĝ, called

the weight space with weight λ for Ĝ. Let B1 and B2 be the two Ĝ-crystals. A
morphism B1 → B2 is a map of underlying sets compatible with wt, ẽα and f̃α.

In the sequel, we write ẽi and f̃i (resp. εi and ϕi) instead of ẽχi,i+1
and f̃χi,i+1

(resp. εχi,i+1
and ϕχi,i+1

) for simplicity.

Let Bµ be the crystal basis of the irreducible Ĝ-module of highest weight µ ∈
X∗(T )+. Then Bµ is a crystal. We call Bµ a highest weight crystal of highest weight
µ (cf. [11, Definition 3.3.1 (3)]). There exists a unique element bµ ∈ Bµ satisfying
ẽαbµ = 0 for all α, wt(bµ) = µ, and Bµ is generated from bµ by operators f̃α.

We can also define the tensor product of Ĝ-crystals (cf. [11, Definition 3.3.1(5)]).

Taking tensor product of Ĝ-crystal is associative, making the category of Ĝ-crystals
a monoidal category. Using this fact, we can endow a Ĝ-crystal structure on the
set of semistandard Young tableaux B(Y ) (cf. [4, chapter 7]). For a semistandard
tableau b ∈ B(Y ), let ki denote the number of i’s appearing in b. Then the weight

map wt on this Ĝ-crystal structure is given by wt(b) = (k1, . . . , kn). For an explicit
description of the actions of ẽi and f̃i on B(Y ), see [6, Theorem 3.4.2]. Finally, the
following well-known theorem gives a realization of Bµ.

Theorem 3.2. Let µ = (µ(1), . . . , µ(n)) ∈ X∗(T )+ \ {0} with µ(n) ≥ 0. Let Y be
the Young diagram having µ(i) boxes in the ith row. Then Bµ

∼= B(Y ).

In the sequel, we identify Bµ and B(Y ) by this isomorphism.

Finally, we recall the Weyl group action on crystals. Let B be a Ĝ-crystal. For
any 1 ≤ i ≤ n− 1 and b ∈ B, we set

sib =

{
f̃
⟨χi,i+1,wt(b)⟩
i b if 〈χi,i+1,wt(b)〉 ≥ 0

ẽ
−⟨χi,i+1,wt(b)⟩
i b if 〈χi,i+1,wt(b)〉 ≤ 0.

Then we have the obvious relation

wt(sib) = si(wt(b)).

By [5, Theorem 7.2.2], this extends to the action of the Weyl group W0 on B, which
is compatible with the action on X∗(T ). One can easily verify the following lemma.

Lemma 3.3. Let w,w′ ∈ W0 and b ∈ B. If w(wt(b)) = w′(wt(b)), then wb = w′b.

Let b ∈ B(λ). If λ′ is a conjugate of λ, i.e., there exists w ∈ W0 such that
λ′ = wλ, then we call wb the conjugate of b with weight λ′. By Lemma 3.3, this
does not depend on the choice of w.
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3.2 The Minuscule Case

If µ ∈ X∗(T )+ is minuscule, then wt: Bµ → X∗(T ) gives an identification between Bµ

and the set of cocharacters which are conjugate to µ. Suppose µ• = (µ1, . . . , µd) ∈
X∗(T )

d
+ is minuscule. We can also identify BĜd

µ• := Bµ1 × · · · × Bµd
with the set of

cocharacters in X∗(T )
d which are conjugate to µ•. Under this identification, set

BĜd

µ• (λ) = {(µ′
1, . . . , µ

′
d) ∈ BĜd

µ• | µ′
1 + · · ·+ µ′

d = λ}

for any λ ∈ X∗(T ).

We write BĜ
µ• for the Ĝ-crystal Bµ1 ⊗ · · · ⊗ Bµd

. Note that this is equal to

BĜd

µ• as a set. As a Ĝ-crystal, we can decompose BĜ
µ• into simple objects, i.e.,

BĜ
µ• = tµB

mµ
µ•

µ . Here mµ
µ• denotes the multiplicity with which Bµ appears in BĜ

µ• .
Using this decomposition, we define a natural map

⊗ : BĜd

µ• → BĜ
µ• → tµBµ

as a composition of the map given by taking tensor product and the canonical
projection to highest weight Ĝ-crystals.

For 1 ≤ k < n, let ωk be the cocharacter of the form (1, . . . , 1, 0, . . . , 0) in which
1 is repeated k times. Assume that each µi is equal to ωki for some 1 ≤ ki < n and
i < j if and only if ki ≤ kj. In the rest of article, we call such µ• Far-Eastern. Since
µ• is Far-Eastern, then |µ•| := µ1 + · · ·+ µd is dominant and its last entry is 0. Set
µ = |µ•| for some Far-Eastern µ•. Using Theorem 3.2, we obtain an embedding

FE: Bµ → BĜ
µ• ,

which decomposes b ∈ Bµ into the tensor product of its columns from right to left.

By forgetting the Ĝ-crystal structure, we obtain a map Bµ → BĜd

µ• , which is also
denoted by FE. One can easily verify the following lemma.

Lemma 3.4. For any b ∈ Bµ, FE(b) is the unique element in BĜd

µ• such that
⊗(FE(b)) = b.

4 Semi-Modules and Crystal Bases

Keep the notations and assumptions above.
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4.1 Irreducible Components

Let λ ∈ X∗(T ) and α ∈ Φ. We set λα = 〈α, λ〉 if α ∈ Φ− and λα = 〈α, λ〉 − 1
if α ∈ Φ+. Let Uλ be the subgroup of G generated by Uα such that λα ≥ 0. We
define υλ ∈ W0 to be the unique element such that Uλ = υλUυ−1

λ . Here U denotes
the unipotent radical of B. It is easy to check υηλ = τυλ. For λ• = (λ1, . . . , λd) ∈
X∗(T )

d, set υλ• = (υλ1 , . . . , υλd
).

Let us denote by IrrXµ•(b•) the set of irreducible components ofXµ•(b•). Through
the identification Jb(F ) ∼= Jb•(F ) given by g 7→ (g, . . . , g), this set is equipped
with an action of Jb(F ). Set Jb(F )0 = Jb(F ) ∩ K = Jb(F ) ∩ I. Then we have
Jb(F )/Jb(F )0 = {ηkJb(F )0 | k ∈ Z} (cf. [1, Lemma 3.3]).

We first consider the case where µ• is minuscule. For λ• ∈ X∗(T )
d, set λ†

• =
b•σ•(λ•), λ

♮
• = λ†

• − λ• and λ♭
• = υ−1

λ•
(λ♮

•). It is easy to check (ηλ•)
♭ = λ♭

•. Let λb

denote the cocharacter whose i-th entry is b im
n
c − b (i−1)m

n
c.

Theorem 4.1. Assume that µ• ∈ X∗(T )
d
+ is minuscule. Then λ• ∈ Atop

µ•,b•
if and

only if λ♭
• ∈ BĜd

µ• (λb), and Xλ•
µ• (b•) is an affine space for such λ•. Moreover, the maps

λ• 7→ λ♭
• and λ• 7→ Xλ•

µ• (b•) induce bijections

Jb(F )\ IrrXµ•(b•)
∼= Atop

µ•,b•
∼= BĜd

µ• (λb).

Proof. This follows from [7, Proposition 2.9 & Theorem 3.3]. Note that we have
StabJb(F )(X

λ•
µ• (b•)) = Jb(F )0.

We write γGd
: IrrXµ•(b•) → BĜd

µ• for the map which factors through this bijec-
tion. Set µ = |µ•|. By [7, Corollary 1.6], the projection pr : Grd → Gr to the first
factor induces a Jb(F )-equivariant map

IrrXµ•(b•) → tµ′≤µ IrrXµ′(b), C 7→ pr(C),

which is also denoted by pr. The general case can be characterized by the minuscule
case using pr and the tensor product of Ĝ-crystals:

Theorem 4.2. There exists a map

γG : IrrXµ(b) → Bµ(λb)

which is characterized by the Cartesian square

IrrXµ•(b•)
γGd

//

pr

��

BĜd

µ•

⊗
��

tµ′≤µ IrrXµ′(b)
γG

// tµ′≤µBĜ
µ′ ,
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where µ• is a minuscule cocharacter in X∗(T )
d
+ such that µ = |µ•|. Moreover, γG

factors through a bijection

Jb(F )\ IrrXµ(b) ∼= Bµ(λb).

Proof. This follows from [7, Theorem 0.5 & Theorem 0.7].

Let us denote by ΓGd
(resp. ΓG) the bijection Atop

µ•,b•
→ BĜd

µ• (λb) (resp. Atop
µ,b →

Bµ(λb)) induced by γGd
(resp. γG). Then by Theorem 4.1 and Theorem 4.2, we have

the Cartesian square

Atop
µ•,b•

ΓGd

//

pr

��

BĜd

µ• (λb)

⊗
��

tµ′≤µAtop
µ′,b

ΓG
// tµ′≤µBĜ

µ′(λb),

where µ• is a minuscule cocharacter in X∗(T )
d
+ such that µ = |µ•|.

4.2 Construction

Let µ ∈ X∗(T )+. For 1 ≤ k ≤ µ(1), set

µk =



ω1 (1 ≤ k ≤ µ(1)− µ(2)),

ω2 (µ(1)− µ(2) < k ≤ µ(1)− µ(3)),
...

ωn−2 (µ(1)− µ(n− 2) < k ≤ µ(1)− µ(n− 1)),

ωn−1 (µ(1)− µ(n− 1) < k ≤ µ(1)).

Set d = µ(1). Obviously µ• ∈ X∗(T )
d
+ is Far-Eastern (§3.2) and µ = |µ•|.

Let wmax denote the maximal length element in W0. Set λ
op
b = wmaxλb. For any

b ∈ Bµ(λb), we denote by bop the conjugate of b with weight λop
b . Let 1 ≤ m0 < n

be the residue of m modulo n. Note that each entry of λb is bm
n
c or bm

n
c + 1, and

λb(i) = λb(n+ 1− i) for any 2 ≤ i ≤ n− 1. Let i0 = 1 < i1 < i2 < · · · < im0 = n be
the integers such that λb(i1) = λb(i2) = · · · = λb(im0) = bm

n
c+ 1. Then

λop
b = w′

maxλb, where w′
max = (sim0−1 · · · sn−1) · · · (si1 · · · si2−1)(s1 · · · si1−1).

Here λb(i) = bm
n
c (resp. λb(i + 1) = bm

n
c) if and only if si−1si ≤ w′

max (resp.
sisi+1 ≤ w′

max). By Lemma 3.3, it follows that bop can be computed by the action
of the Coxeter element w′

max. In this computation, each si acts as the action of ẽi
because bm

n
c − (bm

n
c+ 1) = −1. Therefore, if we write

FE(b) = b1 ⊗ · · · ⊗ bd,
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then there exists (w1, . . . , wd) ∈ W d
0 such that

FE(bop) = w1b1 ⊗ · · · ⊗ wdbd

and each simple reflection appears exactly once in some supp(wj). One can easily
verify the following lemma.

Lemma 4.3. The tuple (w1, . . . , wd) ∈ W d
0 as above is uniquely determined by b.

In particular, w(b) := w−1
1 · · ·w−1

d is a Coxeter element uniquely determined by b.

We call w(b) the Coxeter element associated to b. Set Υ(b) = {υ ∈ W0 |
υ−1τmυ = w(b)}, where τ = s1s2 · · · sn−1. Clearly |Υ(b)| = n.

For any b′ ∈ Bµ, set

ξ(b′) = (ε1(b
′) + · · ·+ εn−1(b

′), ε2(b
′) + · · ·+ εn−1(b

′), . . . , εn−1(b
′), 0).

Let λ−
b be the anti-dominant conjugate of λb, and let b− be the conjugate of b with

weight λ−
b . For any b ∈ Bµ(λb) and υ ∈ Υ(b), we define ξ•(b, υ) ∈ X∗(T )

d by

ξj(b, υ) = υξ(υ−1b−) +
∑

1≤j′<j

υw−1
1 · · ·w−1

j′−1wt(bj′) (1 ≤ j ≤ d).

Theorem 4.4. We have υξj(b,υ) = υw−1
1 · · ·w−1

j−1 and ξ•(b, υ) ∈ Atop
µ•,b•

. Moreover, if
υ′ is an element in Υ(b) different from υ′, then ξ•(b, υ) 6= ξ•(b, υ

′) and ξ•(b, υ) ∼
ξ•(b, υ

′). Finally, we have

(ΓGd

)−1(FE(b)) = [ξ•(b, υ)].

Remark 4.5. Clearly, this construction itself does not depend on the choice of
realization of Bµ.

We can prove Theorem 4.4 purely combinatorially, using Young tableaux. See
[9] for details.

4.3 An Example

In this subsection, we give an example. We consider the case for n = 5,m = 12 and
µ = (4, 3, 3, 2, 0). Then µ1 = (1, 0, 0, 0, 0), µ2 = (1, 1, 1, 0, 0), µ3 = (1, 1, 1, 1, 0), µ4 =
(1, 1, 1, 1, 0), λb = (2, 2, 3, 2, 3) and λop

b = (3, 2, 3, 2, 2). Set

b =

1 1 3 3
2 2 4
3 4 5
5 5

∈ Bµ(λb).
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Then

FE(b) = b1 ⊗ b2 ⊗ b3 ⊗ b4 = 3 ⊗
3
4
5

⊗
1
2
4
5

⊗
1
2
3
5

∈ BĜd

µ• .

By Theorem 4.1, we want to find λ• satisfying

[λ•] = (ΓGd

)−1(FE(b))

⇔ λ♭
• = FE(b) ∈ BĜd

µ• (λb)

⇔ υ−1
λ1
(λ2 − λ1) = wt(b1) = (0, 0, 1, 0, 0),

υ−1
λ2
(λ3 − λ2) = wt(b2) = (0, 0, 1, 1, 1),

υ−1
λ3
(λ4 − λ3) = wt(b3) = (1, 1, 0, 1, 1),

υ−1
λ4
(bλ1 − λ4) = wt(b4) = (1, 1, 1, 0, 1).

In the sequel, we check that for υ ∈ Υ(b), λ• = ξ•(b, υ) satisfies these equations.
Since

bop = ẽ3ẽ4ẽ1ẽ2b =

1 1 1 3
2 2 4
3 3 5
4 5

∈ Bµ(λ
op
b ),

we have

FE(bop) = 3 ⊗ s1s2
3
4
5

⊗ s3

1
2
4
5

⊗ s4

1
2
3
5

∈ BĜd

µ• ,

and

w1 = 1, w2 = s1s2, w3 = s3, w4 = s4, w(b) = w−1
1 w−1

2 w−1
3 w−1

4 = s2s1s3s4.

So

Υ(b) = {υ ∈ W0 | υ−1τ 12υ = s2s1s3s4}
= {υ ∈ W0 | (1 3 5 2 4) = (υ(1) υ(3) υ(4) υ(5) υ(2))}
= {(1 3 5 4 2), (2 4 5), (1 5)(2 3), (1 2 5 3 4), (1 4 3)}.

Set υ1 = (1 3 5 4 2), υ2 = (2 4 5), υ3 = (1 5)(2 3), υ4 = (1 2 5 3 4), υ5 = (1 4 3).
Then

υ−1
1 λ−

b = (2, 2, 3, 2, 3), υ−1
2 λ−

b = (2, 3, 2, 3, 2), υ−1
3 λ−

b = (3, 2, 2, 3, 2),

υ−1
4 λ−

b = (2, 3, 3, 2, 2), υ−1
5 λ−

b = (3, 2, 2, 2, 3).
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The corresponding conjugates of b (cf. [6, Theorem 3.4.2]) are

b =

1 1 3 3
2 2 4
3 4 5
5 5

, ẽ2ẽ4b =

1 1 2 3
2 2 4
3 4 5
4 5

, ẽ1ẽ2ẽ4b =

1 1 1 3
2 2 4
3 4 5
4 5

,

ẽ3ẽ2ẽ4b =

1 1 2 3
2 2 4
3 3 5
4 5

, ẽ1ẽ2b =

1 1 1 3
2 2 4
3 4 5
5 5

,

respectively. From this, we compute

ξ(υ−1
1 b−) = (3, 3, 1, 1, 0), ξ(υ−1

2 b−) = (3, 2, 1, 0, 0), ξ(υ−1
3 b−) = (2, 2, 1, 0, 0),

ξ(υ−1
4 b−) = (3, 2, 1, 1, 0), ξ(υ−1

5 b−) = (3, 3, 2, 1, 0),

and

υ1ξ(υ
−1
1 b−) = (3, 1, 3, 0, 1), υ2ξ(υ

−1
2 b−) = (3, 0, 1, 2, 0), υ3ξ(υ

−1
3 b−) = (0, 1, 2, 0, 2),

υ4ξ(υ
−1
4 b−) = (1, 3, 0, 1, 2), υ5ξ(υ

−1
5 b−) = (2, 3, 1, 3, 0).

Note that

υ2ξ(υ
−1
2 b−) = η(υ3ξ(υ

−1
3 b−)), υ4ξ(υ

−1
4 b−) = η(υ2ξ(υ

−1
2 b−)),

υ1ξ(υ
−1
1 b−) = η(υ4ξ(υ

−1
4 b−)), υ5ξ(υ

−1
5 b−) = η(υ1ξ(υ

−1
1 b−)).

We first consider the case for υ3. Set ξ• = ξ•(b, υ3). Then

ξ1 = (0, 1, 2, 0, 2),

ξ2 = ξ1 + υ3wt(b1) = (0, 2, 2, 0, 2),

ξ3 = ξ2 + υ3wt(b2) = (1, 3, 2, 1, 2),

ξ4 = ξ3 + υ3s2s1wt(b3) = (2, 4, 2, 2, 3).

We can check that

υξ1 = υ3, υξ2 = υ3 = υ3w
−1
1 , υξ3 = υ3s2s1 = υ3w

−1
1 w−1

2 , υξ4 = υ3s2s1s3 = υ3w
−1
1 w−1

2 w−1
3 ,

and

bξ1 − ξ4 = τ 12ξ1 + (3, 3, 2, 2, 2)− ξ4

= (0, 2, 0, 1, 2) + (3, 3, 2, 2, 2)− (2, 4, 2, 2, 3)

= (1, 1, 0, 1, 1) = υξ4 wt(b4).

Thus ξ♭• = FE(b). The same holds for other υ ∈ Υ(b) because υηλ = τυλ.
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